Macaulay2 » Documentation
Packages » RandomComplexes :: testTimeForLLLonSyzygies
next | previous | forward | backward | up | index | toc

testTimeForLLLonSyzygies -- test timing for LLL on syzygies

Synopsis

Description

We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.

i1 : setRandomSeed "nice example 2";
i2 : r=10,n=20

o2 = (10, 20)

o2 : Sequence
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)

o3 = ({5, 2.91596e52, 9}, .00198791, .000995178)

o3 : Sequence
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)

o4 = ({50, 2.30853e454, 98}, .00796857, .0478546)

o4 : Sequence
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})

o5 = {{.00697187, .0159515}, {.00794041, .00597906}, {.00696607, .00896237},
     ------------------------------------------------------------------------
     {.00697088, .0129491}, {.00796871, .0179477}, {.00895954, .0169472},
     ------------------------------------------------------------------------
     {.00697112, .0109613}, {.00707396, .0109662}, {.00597687, .00697906},
     ------------------------------------------------------------------------
     {.00895977, .0119584}}

o5 : List
i6 : 1/10*sum(L,t->t_0)

o6 = .00747592179999994

o6 : RR (of precision 53)
i7 : 1/10*sum(L,t->t_1)

o7 = .0119601984

o7 : RR (of precision 53)

Ways to use testTimeForLLLonSyzygies :

For the programmer

The object testTimeForLLLonSyzygies is a method function with options.